FUNCTIONAL FILLERS

ELASTOMERS AND TPE

THERMOPLASTIC
MOI DED PARTS AND FILMS

Sillitin

aktiSil

Sillikolloid

aktifit

Silfit

CONTENTS

PRODUCTS	3
NEUBURG SILICEOUS EARTH	
SILLITIN & SILLIKOLLOID – MORPHOLOGY	4
SEPARATION PROCESS	6
SILLITIN & SILLIKOLLOID – PARTICLE SIZE DISTRIBUTION	8
SILLITIN & SILLIKOLLOID – COLOR NEUTRALITY	10
SILLITIN & SILLIKOLLOID – PRODUCT CHARACTERISTICS	12
PURISS – PRODUCTS WITH IMPROVED DISPERSION PROPERTIES	14
AKTISIL – PRODUCT CHARACTERISTICS	16
CALCINED NEUBURG SILICEOUS EARTH	
SILFIT & AKTIFIT – MORPHOLOGY	18
SILFIT & AKTIFIT – COMPARISON OF PARTICLE SIZE DISTRIBUTION	20
SILFIT & AKTIFIT – CIELAB COLOR VALUES	22
SILFIT & AKTIFIT – PRODUCT CHARACTERISTICS	24
FILLER PROPERTIES IN ELASTOMERS	26
TYPICAL APPLICATIONS IN ELASTOMERS	34
FILLER PROPERTIES IN TPE	56
TYPICAL APPLICATIONS IN TPE	57
FILLER PROPERTIES IN THERMOPLASTIC MOLDED PARTS	
AND MASTERBATCHES	59
TYPICAL APPLICATIONS IN THERMOPLASTIC MOLDED PARTS	
AND MASTERBATCHES	62
FILLER PROPERTIES IN THERMOPLASTIC FILMS AND MASTERBATCHES	67
TYPICAL APPLICATIONS IN THERMOPLASTIC FILMS AND MASTERBATCHES	70
PACKAGING	72
TESTING METHODS	74

PRODUCTS

|--|

Standard products (natural, untreated fillers). Differ in brightness and particle size distribution.

puriss

Created by a downstream process. The extremely low portion of oversized particles is reduced even more and the dispersion properties are improved.

aktiSil

Surface-treated products. Neuburg Siliceous Earth treated with additives.

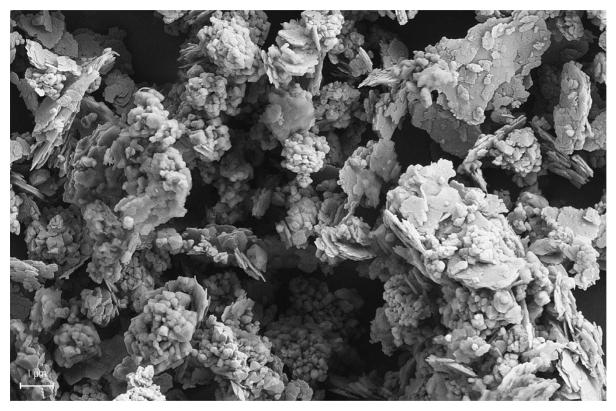
Silfit

Calcined products based on SILLITIN. A downstream thermal process gives the product additional application advantages as a functional filler.

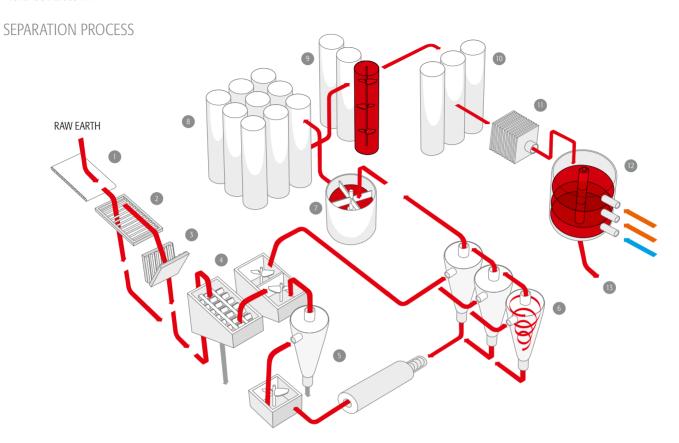
aktifit

An activated SILFIT produced through surface treatment with special silanes.

18


14

16


18

_

Sillitin Sillikolloid - MORPHOLOGY

Classic Neuburg Siliceous Earth is a natural combination of corpuscular, cryptocristalline and amorphous silica and lamellar kaolinite: a loose mixture impossible to separate by physical methods. As a result of natural aging, the silica portion exhibits a round grain shape and consists of aggregated cryptocristalline primary particles of about 200 nm diameter which are coated partially opallike. Such a unique structure is responsible for a relatively high specific surface area and oil absorption, which result, besides rheological activity, also in a whole range of application properties.

Basically speaking, our entire production process is a process of separation – because only about 30 % of the raw earth extracted are a usable fine product. A particularly structure-conserving process separates the fine product from sand and sundry stones and rock. In the first step the raw material is dispersed in water and thus separated from gravel fractions. This is followed by the hydrocyclone unit which separates the sand fractions and sorts the fine particles into different particle sizes. The slurry obtained is then concentrated and the water removed in filter presses. Finally, the natural gas powered turbine dryers remove the remaining moisture. The slurry is then pulverized and stored for further processing.

1-3

Input and crushing of raw earth, separation of coarse material through vibration sieve

4-5

Separation of gravel fractions and dispersion in water

6

Separation of sand fractions and sorting into different grain sizes with a hydrocyclone unit

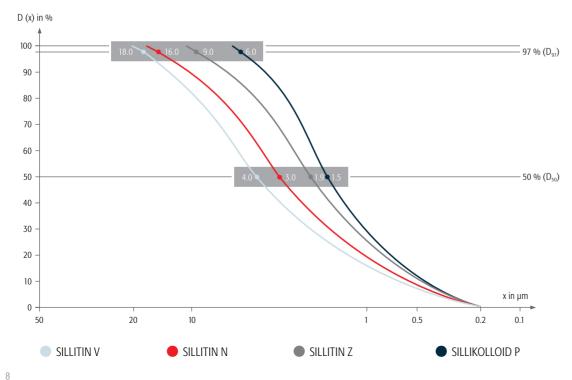
7-10

Concentration, storage and blending of different product types in the form of slurry

11-12

Removal of water in filter presses, extraction of remaining moisture in dryers

13


Refining, surface treatment, packaging

Sillitin Sillikolloid – PARTICLE SIZE DISTRIBUTION

The particle size distribution, color value graphs and overview tables on the following pages show the physical properties and chemical composition of the Neuburg Siliceous Earth. The most significant differentiating characteristics are the particle size distribution and color neutrality.

Neuburg Siliceous Earth is available in four different particle fractions, identified by the letters V, N, Z and P.

PARTICLE SIZE DISTRIBUTION

The measuring method for this particle size distribution is based on the Fraunhofer analysis of diffraction spectra. The analysis were performed with the Mastersizer 3000, a laser device from Malvern Instruments.

Sillitin Sillikolloid – COLOR NEUTRALITY

In addition, classic Neuburg Siliceous Earth is available in different shades and colors ranging from yellow to off-white to white depending on the particle size distribution. This color neutrality is expressed in numbers.

COLOR NEUTRALITY

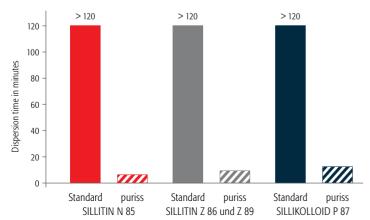
Sillitin Sillikolloid – PRODUCT CHARACTERISTICS

PRODUCT	UNIT	SILLITIN	SILLITIN	SILLITIN	SILLITIN	SILLITIN	SILLITIN	SILLITIN	SILLIKOLLOID
CHARACTERISTIC		V 85	V 88	N 82	N 85	N 87	Z 86	Z 89	P 87
Brightness Y		82	86	77	82	83	82	86	82
Brightness Z		76	88	65	75	76	75	86	76
Particle size D_{50} D_{97}	μm	4.0	4.0	3.0	3.0	3.0	1.9	1.9	1.5
	μm	18.0	18.0	16.0	16.0	16.0	9.0	9.0	6.0
Residue > 40 μm	mg/kg	25	25	25	25	20	20	20	20
> 200 μm	mg/kg	5	5	5	5	5	3	3	3
/olatile matter at 105 °C	%	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
pH value		8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5
Density	g/cm³	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6
Bulk density	g/cm³	0.35	0.35	0.30	0.30	0.30	0.25	0.25	0.25
Tamped density	g/cm³	0.60	0.60	0.50	0.50	0.50	0.40	0.40	0.40
Spec. surface area (BET)	m²/g	8	8	11	10	10	12	11	13
Oil absorption	g/100 g	45	45	45	45	45	55	55	55
Hardness silica/kaolinite	mg	7/2.5	7/2.5	7/2.5	7/2.5	7/2.5	7/2.5	7/2.5	7/2.5
Abrasivity		40	40	40	35	35	30	30	25
Refractive index n		1.55	1.55	1.55	1.55	1.55	1.55	1.55	1.55
Water solubility	%	insoluble	insoluble	insoluble	insoluble	insoluble	insoluble	insoluble	insoluble
Acid solubility	%	0.4	0.4	0.5	0.5	0.5	0.4	0.4	0.5
CHEMICAL ANALYSIS: SiO ₂ Al ₂ O ₃ Fe ₂ O ₃	% % %	87 8 <1	88 8 <1	82 12 <1.5	84 10 < 1	84 10 < 1	82 12 < 1	82 12 <1	80 14 <1
MINERALOGICAL COMPOSITION: Cryptocrystalline silica Amorphous silica Kaolinite Other minerals	% % % %	70 8 17 5	70 8 17 5	60 10 25 5	65 10 20 5	65 10 20 5	60 10 25 5	60 10 25 5	55 10 30 5

The values shown in the table are to be considered as guidelines only.

Material specifications for each product are binding and are available on our website www.hoffmann-mineral.com.

EINECS-Nr.: 310-127-6


CAS-Nr.: 1020665-14-8 (Siliceous Earth)
CAS-Nr.: 7631-86-9 (silica), 1318-74-7 (kaolinite)
TSCA-Nr.: 7631-86-9 (silica), 1318-74-7 (kaolinite)

puriss – Products with Improved dispersion properties

- The extremely low residue of $> 40 \mu m$ is significantly reduced even more
- Reduction of wear when processing through optimum dispersion in low viscosity compounds
- puriss products are the #1 choice for extremely high requirements for dispersion performance and surface quality for application in elastomers and thermoplastic elastomers:
- low viscosity compounds with high dose of plasticizer
- extremely thin-walled products like membranes
- printing roller coverings, printing stencils, offset printing blankets
- low durometer automotive profiles with Class A surface quality

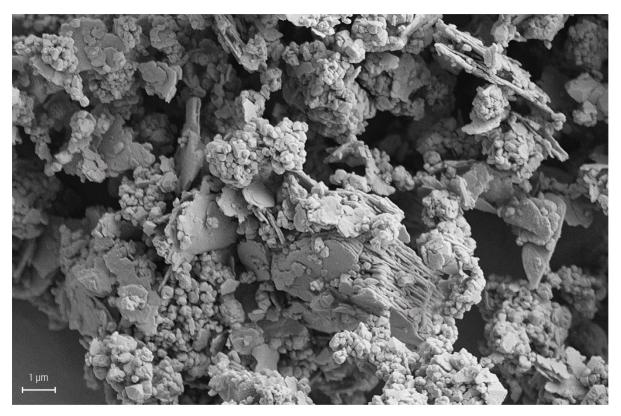
DISPERSION PROPERTIES IN ESTER PLASTICIZER

Stirred with blade mixer 1200 rpm, 20 % filler concentration, grain size (Hegman gauge) \leq 20 μ m

PRODUCT CHARACTERISTIC	UNIT	SILLITIN N85 puriss	SILLITIN Z86 puriss	SILLITIN Z89 puriss	SILLIKOLLOID P 87 puriss
Brightness Y Brightness Z		82 75	82 75	86 86	82 76
Particle size D ₅₀ D ₉₇	μm μm	3.0 16.0	1.9 9.0	1.9 9.0	1.5 6.0
Residue > 40 μm > 200 μm	mg/kg mg/kg	8	8	8	8
Volatile matter at 105 °C	%	0.5	0.5	0.5	0.5
pH value		8.5	8.5	8.5	8.5
Density Bulk density Tamped density	g/cm³ g/cm³ g/cm³	2.6 0.28 0.48	2.6 0.23 0.37	2.6 0.20 0.34	2.6 0.20 0.34
Oil absorption	g/100g	45	55	55	55
Hardness silica/ kaolinite Abrasivity	mg	7/2.5 35	7/2.5 30	7/2.5 30	7/2.5 20
Refractive index n		1.55	1.55	1.55	1.55
Water solubility Acid solubility	% %	insoluble 0.5	insoluble 0.4	insoluble 0.4	insoluble 0.5
Dispersion time in ester plasticizer	min	3	7	7	8
CHEMICAL ANALYSIS: SiO ₂ Al ₂ O ₃ Fe ₂ O ₃	% % %	84 10 < 1	82 12 < 1	82 12 < 1	80 14 < 1
MINERALOGICAL COMPOSITION: Cryptocrystalline silica Amorphous silica Kaolinite Other minerals	% % % %	65 10 20 5	60 10 25 5	60 10 25 5	55 10 30 5

The values shown in the table are to be considered as guidelines only. Material specifications for each product are binding and are available on our website www.hoffmann-mineral.com.

aktiSil – PRODUCT CHARACTERISTICS

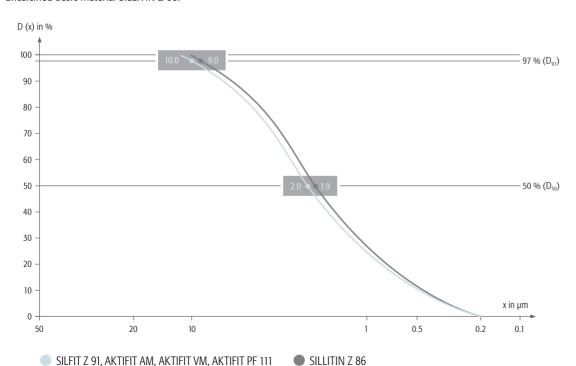

This special fillers are made by treating the surface of Neuburg Siliceous Earth with chemical agents, mostly silanes.

PRODUCT CHARACT		UNIT	AKTISIL MAM	AKTISIL MAM-R	AKTISIL VM 56	AKTISIL VM 56/89	AKTISIL Q	AKTISIL EM	AKTISIL AM	AKTISIL MM	AKTISIL PF 216	AKTISIL PF 777
Basic material	SILLITIN		V 88	V 85	Z 86	Z 89	V 90¹	Z 86	Z 86	Z 86	Z 86	Z 86
Silanized with			Methacrylic silane	Methacrylic silane	Vinyl silane	Vinyl silane	Methacrylic silane	Epoxy silane	Amino silane	Mercapto silane	Tetrasulfane silane	Alkyl silane
Brightness Y Brightness Z			83 85	80 76	81 76	85 85	84 85	82 77	82 77	81 76	82 77	80 75
Particle size	D ₅₀ D ₉₇	μm μm	4.0 18.0	4.0 18.0	2.2 10.0	2.0 9.0	4.0 18.0	2.2 10.0	2.2 10.0	2.2 10.0	2.2 10.0	2.2 10.0
Residue	> 40 μm > 200 μm	mg/kg mg/kg	20 3	20	20 3	20 3	25 5	20 3	30 3	30 3	15 3	20
Volatile matte	r at 105 °C	%	0.2	0.2	0.8	0.8	0.3	0.5	0.2	0.7	0.3	0.3
Density Bulk density		g/cm³ g/cm³	2.6 0.45	2.6 0.45	2.6 0.32	2.6 0.32	2.6 0.45	2.6 0.32	2.6 0.32	2.6 0.32	2.6 0.25	2.6 0.25
Spec. surface Oil absorption	, ,	m²/g g/100 g	7 45	9 45	9 45	8 45	6 43	9 45	9 45	9 45	9 60	9 35
Water absorpt	tion	ml/g	0.9	0.9	not specified	not specified	0.5	not specified	not specified	not specified	0.01	0.01
reactive			✓	✓	✓	✓	✓	~	✓	✓	✓	
hydrophobic											✓	✓

The values shown in the table are to be considered as guidelines only. Material specifications for each product are binding and are available on our website www.hoffmann-mineral.com.

¹ internal product quality

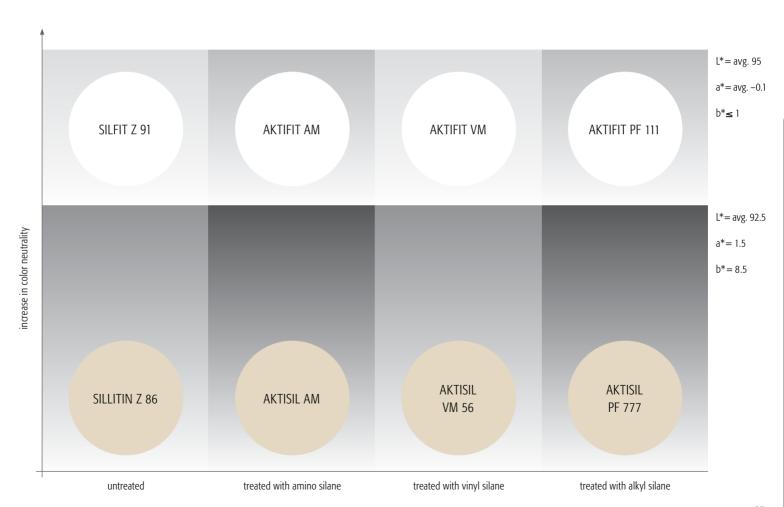
Silfit aktifit - MORPHOLOGY


Our calcined products SILFIT and AKTIFIT are based on SILLITIN Z 86 which is thermally processed.

Silfit aktifit – COMPARISON OF PARTICLE SIZE DISTRIBUTION

THERE ARE FOUR CALCINED NEUBURG SILICEOUS EARTH PRODUCTS AVAILABLE:

- Basic product SILFIT Z 91
- Three surface-treated products:
- · AKTIFIT AM treated with amino silane
- · AKTIFIT VM treated with vinyl silane
- · AKTIFIT PF 111 treated with alkyl silane


All calcined products have a particle size close to that of the uncalcined basic material SILLITIN Z 86.

The measuring method for this particle size distribution is based on the Fraunhofer analysis of diffraction spectra. The analyses were performed with the Mastersizer 3000, a laser device from Malvern Instruments.

Silfit aktifit - CIELAB COLOR VALUES

With regard to the CIELAB Color Values L*, a* and in particular b*, the calcined products are significantly brighter and more color neutral than the basic material.

Silfit aktifit – PRODUCT CHARACTERISTICS

PRODUCT CHARACTERISTIC	UNIT	SILFIT Z 91	AKTIFIT AM	AKTIFIT VM	AKTIFIT PF 111
Basic material		SILLITIN Z 86	SILFIT Z 91	SILFIT Z 91	SILFIT Z 91
Silanized with		untreated	Amino silane	Vinyl silane	Alkyl silane
Color values L*		95	95	94	94
a*		- 0.1	- 0.1	- 0.1	- 0.2
b*		1	1	1	1
Particle size D ₅₀	μm	2.0	2.0	2.0	2.0
D ₉₇	μm	10.0	10.0	10.0	10.0
Residue > 40 mm	mg/kg	10	10	10	10
Volatile matter at 105 °C	%	0.2	0.2	0.1	0.2
Density	g/cm³	2.6	2.6	2.6	2.6
Bulk density	g/cm ³	0.33	0.31	0.42	0.38
Tamped density	g/cm³	0.55	0.55	0.70	0.70
Spec. surface area (BET)	m²/g	8	7	7	7
Oil absorption	g/100 g	55	55	55	49
Silica hardness/calcined kaolinite		7/4.5	7/4.5	7/4.5	7/4.5
Refractive index n		1.55	1.55	1.55	1.55
Water solubility	%	insoluble	insoluble	insoluble	insoluble
Acid solubility	%	0.25	0.25	0.25	0.25
pH value		6.5	9	not applicable	not applicable
Water absorption	ml/g	not specified	not specified	≤ 0.1	≤ 0.1
CHEMICAL ANALYSIS: SiO ₂	%	86	86	86	86
$AI_{7}O_{3}$	%	13	13	13	13
Fe_2O_3	%	< 1	< 1	<1	<1
MINERALOGICAL COMPOSITION:					
Cryptocrystalline silica	%	60	60	60	60
Calcined kaolinite	%	30	30	30	30
Amorphous mineral phases	%	10	10	10	10
Equilibrium moisture content at 25 °C					
and 50% relative humidity	%	0.12	0.11	0.05	0.07
and 80% relative humidity	%	0.22	0.29	0.07	0.10
and 90% relative humidity	%	0.54	0.55	0.08	0.13
reactive			✓	✓	
hydrophobic				✓	✓

The values shown in the table are to be considered as guidelines only. Material specifications for each product are binding and are available on our website www.hoffmann-mineral.com.

EINECS-Nr.: 310-127-6

CAS-Nr.: 1214268-39-9 (Siliceous Earth, calcined)
CAS-Nr.: 7631-86-9 (silica), 92704-41-1 (kaolin, calcined)
TSCA-Nr.: 7631-86-9 (silica), 92704-41-1 (kaolin, calcined)

ADVANTAGES OF NEUBURG SILICEOUS EARTH AND CALCINED NEUBURG SILICEOUS EARTH IN ELASTOMERS

PROPERTY IN ELASTOMERS	ADVANTAGES FOR USERS
easily and rapidly mix in, very good dispersion properties	short mixing times, no agglomerates
high degree of filling	low compound costs
good rheology	molds with high number of cavities
good extrusion properties, good calendering properties	high haul-off speeds with good surface quality for high quality extrusions and sheets, cost reduction through no or low need for auxiliary processing aids
matting effect	high quality appearance with satin finish of black profiles
no negative influence on cure rate, good thermal conductivity	short vulcanization time, high haul-off speed for continuous vulcanization
excellent surface	visually perfect articles, few rejects
low tension and compression set	excellent sealing properties
high electrical resistivity	insulation with low loss
favorable aging properties	long service life, cost reduction through low need for anti-aging agents
superior chemical resistance	high resistance against aggressive media
high purity	can be used in pharmaceutical articles and food contact materials
SPECIAL ADVANTAGES OF CALCINED NEUBURG SILICEOUS EARTH IN ELASTOMERS	
low moisture content, low moisture absorption	lower risk of blistering for pressureless vulcanization
very high brightness and color neutrality	for white products without yellowness, less need for white pigments like titanium dioxide
optimum dispersion properties even in critical compounds, comparable with puriss products	short mixing times, no agglomerates
avoids mold fouling/deposits on dies caused by filler	high productivity and low costs thanks to reduction of stoppages for cleaning and prevention of waste
very fine cell structure in sponge and microcellular rubber	high quality sponge and expanded rubber products
low dielectric loss in high voltage insulation	reduced energy losses in electric power transmission
potential for lower compression set	improved long-term sealing effect, for greater flexibility in creating recipes
potential for improved oil resistance	combined with the very low compression set for meeting high demands for sealing

ASTOMERS. T

Sillitin Sillikolloid Silfit -

SELECTION CRITERIA IN ELASTOMERS

		SILLITIN V 85	SILLITIN V 88	SILLITIN N 82	SILLITIN N 85	SILLITIN N 87	SILLITIN Z 86	SILLITIN Z 89	SILFIT Z 91	SILLIKOLLOID P 87	
Color	neutrality	• •	••••	•	• •	•••	••	• • • •	•••••	••	
z	Profile quality, edge smooth- ness of complex profiles	•	•	• • •	• •	• •	•••	•••	•••0	••••	
EXTRUSION	Collapse resistance	•	•	•••	• •	••	•••	•••	•••		
Ω .	Matting effect	• • • •	••••	• • •	•••	•••	••	• •	• •	•	
Viscosity		•	•	•••	• •	••	•••	•••	••0	••••	
Tensi	le strength	• •		• • •	• •	• •	•••	•••	•••	••••	
Tear resistance Compression set Rebound elasticity Abrasion loss		ce • •		•••	• •	••	•••	•••	•••	••••	
		•	•	• • •	• •	• •	•••	•••	• 0	••••	
		••••	••••	• • •	•••	•••	••	••	••	•	
		• • • •	••••	••	• • •	•••	••	••	••	•	

Property: $\bullet = low \quad \bullet \quad \bullet \quad \bullet = high$

LASTOMERS, "

aktiSil aktifit -

SELECTION CRITERIA IN ELASTOMERS

	I	I	SULPHUR/SULPHUR DONORS	METAL OXIDE	RESIN	PEROXIDE, RADIATION	NR, SBR, BR, IR, NBR, HNBR (PARTLY HYDROGENATED), CR, IIR, CIIR, BIIR	HNBR (FULLY HYDROGENATED) CM, CSM, EPM, EVM	ЕРОМ	FKM, ACM, AEM (Vamac®)	SILICONE COMPOUNDS	PU ELASTOMERS
PRODUCT	BASIC MATERIAL	TREATED WITH	15	- ⊠			ZÍ	± 0	<u></u>	<u> </u>	IS	
AKTISIL MAM	SILLITIN V 88	Methacrylic silane			•	•	•	•	•			
AKTISIL MAM-R	SILLITIN V 85	Methacrylic silane			•	•	•	•	•			
AKTISIL VM 56	SILLITIN Z 86	Vinyl silane			•	•		•	•			
AKTISIL VM 56/89	SILLITIN Z 89	Vinyl silane				•		•	•			
AKTISIL Q	SILLITIN V 901	Methacrylic silane			•	•	•			•	•	
AKTISIL EM	SILLITIN Z 86	Epoxy silane	•	•	•		•		•			(•)
AKTISIL AM	SILLITIN Z 86	Amino silane	•	•		•	•	•	•			(•)
AKTISIL MM	SILLITIN Z 86	Mercapto silane	•	•	•		•		•			
AKTISIL PF 216	SILLITIN Z 86	Tetrasulfane silane	•	•	•		•		•			
AKTISIL PF 777	SILLITIN Z 86	Alkyl silane	•	•	•	•	•	•	•			
AKTIFIT VM	SILFIT Z 91	Vinyl silane			•	•		•	•	•	•	
AKTIFIT AM	SILFIT Z 91	Amino silane	•	•	•	•	•	•	•	•		•
AKTIFIT PF 111	SILFIT Z 91	Alkyl silane	•	•	•	•	•	•	•	•		

¹ internal product quality Specialties available on request.

Technical data sheets and material specifications for the above-mentioned products are available on our website www.hoffmann-mineral.com.

aktiSil aktifit – APPLICATIONS IN ELASTOMERS

These special fillers are based on Neuburg Siliceous Earth, the surface of which is treated with chemical agents, mostly silanes.

The AKTISIL and AKTIFIT types have largely functional groups that enable covalent bonds or intensive interaction with the polymer matrix and produce special effects.

PRODUCT NAME	APPLICATION
AKTISIL MAM	seals and molded parts based on EPDM and HNBR, butyl-based and resin-crosslinked condenser seals
AKTISIL MAM-R	like MAM but for lesser color neutrality requirements
AKTISIL VM 56	window and façade sealing, low-voltage cable sheaths and insulation, radiator hoses, seals, O-rings, sponge rubber, timing belts, roller coverings
AKTISIL VM 56/89	as VM 56 but for greater color neutrality requirements
AKTISIL Q	silicone compounds, silicone turbocharger hoses, seals and molded parts based on HNBR and FKM, improvement of oil resistance
AKTISIL EM	special seals, PU elastomers (solid rubbers), roller coverings, butyl-based and resin-crosslinked condenser seals
AKTISIL AM	elastomer-metal composite bearings for vibration isolation, PU elastomers (solid rubbers), roller coverings, seals for pharmaceuticals, sponge rubber
AKTISIL MM	car body seals, window and façade sealing, radiator hoses, cable sheaths, seals and O-rings, roller coverings
AKTISIL PF 216	car body seals, hydraulic and fuel hoses, condenser seals, seals and O-rings, roller coverings, full rubber tires, timing belts, bearings for vibration isolation
AKTISIL PF 777	products for which an extremely hydrophobic filler is required to minimize water absorption, e. g. anti-corrosion strips and adhesion primers, sealing tape or sheets, or where a reduction in viscosity must be achieved without processing agents

A	PRODUCT NAME	APPLICATION
	AKTIFIT AM	like AKTISIL AM, but with highest color neutrality, avoidance of mold fouling/deposits on dies caused by filler, lower compression set and improved oil resistance with amine crosslinking (AEM, Vamac®, ACM and BIIR), bisphenol crosslinking FKM, thermoplastic EVA and TPU compounds
	AKTIFIT VM	like AKTISIL VM 56 and VM 56/89, but with highest color neutrality, hydrophobic, avoidance of mold fouling/deposits on dies caused by filler, lower compression set, high-voltage cable and electrical applications with low dielectric loss, molded parts, peroxide crosslinking FKM
	AKTIFIT PF 111	similar to AKTISIL PF 777, but with highest color neutrality, hydrophobic, avoidance of mold fouling/deposits on dies caused by filler, lower compression set, bisphenol crosslinking (FKM)

Following properties can be significantly improved: tensile strength, tensile modulus, tension and compression set, abrasion resistance, resistance to fluids, electrical resistivity and dielectric loss after exposure to water.

AUTOMOTIVE

CAR BODY SEALS, SOLID/FOAMED

ADVANTAGES:

34

- good extrusion properties
- high surface quality
- · low moisture content
- · high tensile modulus
- low compression set
- high electrical resistance (compared with carbon black)
- avoids deposits on dies caused by filler

RECOMMENDED PRODUCTS:

with low requirements

• SILLITIN N 82 standard product for non-critical compounds

 SILLITIN N 85 standard product for slightly higher requirements for dispersion, low compression set, good matting effect

SILLITIN Z 86 standard product with improved extrusion quality/edge smoothness of complex profiles, less wear than SILLITIN N products

SILLIKOLLOID P 87 best extrusion quality/edge smoothness and collapse resistance of complex profiles and stability, lesser matting effect, higher tensile strength and tear resistance, least wear

• SILFIT Z 91

as Z 86 but with avoidance of deposits on dies caused by filler, greater brightness and color neutrality, less moisture content, improved dispersion, lower compression set, very fine cell structure in sponge rubber profiles

AKTISIL MM

as Z 86 but with higher tensile strength, higher tensile modulus, lower compression set, improved abrasion resistance

• AKTISIL PF 216

as MM but with highest tensile strength and tensile modulus as well as lowest compression set and best abrasion resistance

AKTIFIT AM

as Z 91 but with higher tensile strength, higher tensile modulus and lower compression set, improved abrasion resistance

DIRECT GLAZING OF FIXED SIDE WINDOWS

ADVANTAGES:

- good mixing and dispersion properties
- long flow time with short vulcanization time
- easy deflashing
- low compression set
- · matting
- high surface quality and evenness

RECOMMENDED PRODUCTS:

- SILLITIN Z 86 standard product
- SILFIT Z 91

as Z 86 but with avoidance of mold fouling caused by filler, less moisture content, improved dispersion, slightly lower compression set

ELASTOMERS, TPE

AUTOMOTIVE

MOLDED GASKETS, O-RINGS AND RADIAL SHAFT SEALS

ADVANTAGES:

- very low sieve residue
- good mixing and dispersion properties
- long flow time with short vulcanization time
- · easy deflashing
- · low compression set
- good resistance against oil, water and acid
- avoidance of mold fouling caused by filler

RECOMMENDED PRODUCTS:

SILLITIN N 82

standard product for non-critical compounds with low requirements

SILLITIN N 85

standard product for slightly higher requirements for color and dispersion, low compression set

• SILLITIN Z 86

standard product, less wear than SILLITIN N products

SILLIKOLLOID P 87

higher tensile strength and tear resistance, least wear

• SILFIT Z 91

as N 85 but with avoidance of mold fouling caused by filler, greater brightness and color neutrality, less moisture content, improved dispersion, very fine cell structure in sponge rubber parts

SPECIALLY FOR DIAMINE CROSSLINKING (ACM, AEM):

AKTIFIT AM

as Z 91 but with higher tensile strength, higher tensile modulus and lower compression set, better abrasion resistance, improved chemical resistances

SPECIALLY FOR SULPHUR AND METALOXIDE CROSSLINKING:

AKTISII MM

as Z 86 but with higher tensile strength, higher tensile modulus and lower compression set even over 100 °C, better abrasion resistance, improved chemical resistances

AKTISII PF 216

as MM but with highest tensile strength and tensile modulus as well as lowest compression set up to 100 °C, best abrasion resistance, best chemical resistances

AKTIFIT AM

as Z 91 but with higher tensile strength, higher tensile modulus and lower compression set, better abrasion resistance, improved chemical resistances

SPECIALLY FOR BISPHENOLIC CROSSLINKING (FKM):

AKTIFIT AM

as Z 91, but with higher tensile strength, higher tensile modulus and lower compression set, optimum abrasion resistance, improved resistance to water and fuel

AKTISIL O

similar to AKTIFIT AM, but with lower mooney viscosity, greater elongation at break and optimum compression set, good resistance to water and oil

• AKTIFIT PF 111

similar to AKTIFIT AM, but with lower mooney viscosity, greater tensile strength and elongation at break, good resistance to water and oil

SPECIALLY FOR PEROXIDE CROSSLINKING:

AKTISII VM 56

as Z 86 but with higher tensile strength, higher tensile modulus and lower compression set, better abrasion resistance, improved chemical resistances

AKTISIL VM 56/89

as VM 56 but for greater color neutrality requirements and slightly improved dispersion

AKTISIL O

similar to VM 56/89 but with less moisture content, lower viscosity, lower compression set, improved resistance, best product for silicone rubber

AKTIFIT VM

as Z 91 but with higher tensile strength, higher tensile modulus and lower compression set, better abrasion resistance, improved chemical resistances

AUTOMOTIVE

RADIATOR HOSES

ADVANTAGES:

- high extrusion speed
- high tensile modulus
- low compression set
- coolant resistance
- high electrical resistance

RECOMMENDED PRODUCTS:

- SILLITIN N 85 standard product
- SILLITIN Z 86 standard product with better extrusion properties, less wear than SILLITIN N products
- SILFIT Z 91
 as N 85 but with avoidance of mold fouling caused by filler, less moisture content, improved dispersion

SPECIALLY FOR SULPHUR CROSSLINKING:

AKTISIL MM

as Z 86 but with higher tensile strength, higher tensile modulus and lower compression set, better abrasion resistance, improved chemical resistances

AKTIFIT AM

as Z 91 but with higher tensile strength, higher tensile modulus and lower compression set, better abrasion resistance, improved chemical resistances

SPECIALLY FOR PEROXIDE CROSSLINKING:

AKTISIL VM 56

as Z 86 but with higher tensile strength, higher tensile modulus and lower compression set, better abrasion resistance, improved chemical resistances

AKTIFIT VM

as Z 91 but with higher tensile strength, higher tensile modulus and lower compression set, better abrasion resistance, improved chemical resistances

HCR SILICONE TURBOCHARGER HOSES

ADVANTAGES:

- high extrusion speed
- high collapse resistance for hose extrusion
- · high tensile modulus
- low compression set
- heat resistance
- · high oil resistance

RECOMMENDED PRODUCTS:

AKTISIL Q

TIMING BELTS

ADVANTAGES:

- · good processing properties
- good adhesive strength to reinforcing materials
- good dynamic properties
- low compression set
- high oil resistance

RECOMMENDED PRODUCTS:

- AKTISIL PF 216 for sulphur and metal-oxide crosslinking
- AKTISIL VM 56 for peroxide crosslinking

MACHINE AND EQUIPMENT CONSTRUCTION

CONVEYOR BELT SKIM COMPOUNDS

ADVANTAGES:

- good processing properties
- good calendering properties
- good adhesive strength to reinforcing materials
- · high tensile modulus

RECOMMENDED PRODUCTS:

- SILLITIN N 82 standard product for non-critical compounds with low requirements
- SILLITIN N 85 as N 82, standard product for slightly higher requirements for color and dispersion
- SILLITIN Z 86
 as N 85, standard product, less wear than
 SILLITIN N products

ELASTOMER-METAL COMPOSITES

ADVANTAGES:

• improved elastomer-metal adhesive strength

RECOMMENDED PRODUCTS:

- AKTISIL AM standard product
- AKTIFIT AM
 as AKTISIL AM but with avoidance of mold fouling caused by filler, improved dispersion, slightly lower compression set

WASHING MACHINE GASKETS

ADVANTAGES:

- long flow time with short vulcanization time
- good balance between tensile strength, tear resistance and compression set
- good suds resistance
- potential substitute for silica
- potential for reducing titanium dioxide and zinc oxide
- avoidance of mold fouling caused by filler

RECOMMENDED PRODUCTS:

- SILLITIN N 85 standard product
- SILLITIN Z 86 standard product, less wear than SILLITIN N products
- SILLIKOLLOID P 87 higher tensile strength and tear resistance, least wear
- SILFIT Z 91
 as N 85 but with avoidance of mold fouling caused by filler, greater brightness and color neutrality, less moisture content, improved dispersion, slightly lower compression set, substitute for silica and potential reduction of titanium dioxide, zinc oxide and processing aids, reduced swelling in suds (silica substitute)

ELASTOMERS, TPE

MACHINE AND EQUIPMENT CONSTRUCTION

ROLLER COVERINGS AND PRINTING BLANKETS

ADVANTAGES:

- very low residue > 40 μm
- good mixing and dispersion properties
- good rubber-metal adhesive strength
- excellent grinding properties
- · high surface quality
- good for laser engraving
- low dynamic heat build-up
- · low compression set
- good resistance against solvents, oil, water, acid

RECOMMENDED PRODUCTS:

- SILLITIN N 85/SILLITIN N 85 puriss standard product, puriss for high requirements for dispersion
- SILLITIN Z 86/SILLITIN Z 86 puriss standard product, less wear than N 85, puriss for high requirements for dispersion
- SILFIT Z 91

as N 85 puriss but with avoidance of mold fouling caused by filler, greater brightness and color neutrality, less moisture content

SPECIALLY FOR SULPHUR AND METALOXIDE CROSSLINKING:

AKTISIL MM

as Z 86 but with higher tensile strength, higher tensile modulus and lower compression set even over 100 °C, better abrasion resistance, improved chemical resistances, lower dynamic heat build-up

AKTISIL PF 216

as MM but with highest tensile strength and tensile modulus as well as lowest compression set up to 100 °C, best abrasion resistance, best resistance, lowest dynamic heat build-up

AKTIFIT AM

as Z 91 but with higher tensile strength, higher tensile modulus and lower compression set, better abrasion resistance, improved chemical resistances, lower dynamic heat build-up

SPECIALLY FOR PEROXIDE CROSSI INKING:

AKTISII VM 56

as Z 86 but with higher tensile strength, higher tensile modulus and lower compression set, better abrasion resistance, improved chemical resistances, lower dynamic heat build-up

AKTISIL VM 56/89

as VM 56 but for greater color neutrality requirements and slightly improved dispersion

AKTISIL O

similar to VM 56/89 but with less moisture content, lower viscosity, lower compression set, improved chemical resistances, best product for silicone rubber

AKTIFIT VM

as Z 91 but with higher tensile strength, higher tensile modulus and lower compression set, better abrasion resistance, improved chemical resistances, lower dynamic heat build-up

SPECIALLY FOR DIAMINE CROSSLINKING (ACM, AEM):

AKTIFIT AM

as Z 91 but with higher tensile strength, higher tensile modulus and lower compression set, better abrasion resistance, improved chemical resistances

SPECIALLY FOR BISPHENOLIC CROSSLINKING (FKM):

AKTIFIT AM

as Z 91, but with higher tensile strength, higher tensile modulus and lower compression set, optimum abrasion resistance, improved resistance to water and fuel

AKTISIL O

similar to AKTIFIT AM, but with lower mooney viscosity, greater elongation at break and optimum compression set, good resistance to water and oil

• AKTIFIT PF 111

similar to AKTIFIT AM, but with lower mooney viscosity, greater elongation at break, good resistance to water and oil

MACHINE AND EQUIPMENT CONSTRUCTION

HYDRAULIC AND FUEL HOSES, OIL-RESISTANT HOSES IN GENERAL

ADVANTAGES:

- very good extrusion properties
- high surface quality
- high tensile modulus
- · low compression set
- good resistance against fuels, oil, water, acid
- avoids deposits on dies caused by filler

RECOMMENDED PRODUCTS:

- SILLITIN Z 86 standard productt
- SILFIT Z 91

as Z 86 but with avoidance of deposits on dies caused by filler, greater brightness and color neutrality, less moisture content, improved dispersion, slightly lower compression set

SPECIALLY FOR SULPHUR AND METALOXIDE CROSSLINKING:

AKTISIL MM

as Z 86 but with higher tensile strength, higher tensile modulus and lower compression set even over 100 °C, better abrasion resistance, improved chemical resistances

AKTISIL PF 216

as AKTISIL MM but with highest tensile strength and tensile modulus as well as lowest compression set up to 100 °C, best abrasion resistance, best chemical resistances

AKTIFIT AM

as Z 91 but with higher tensile strength, higher tensile modulus and lower compression set, better abrasion resistance, improved chemical resistances

SPECIALLY FOR PEROXIDE CROSSI INKING:

AKTISII VM 56

as Z 86 but with higher tensile strength, higher tensile modulus and lower compression set, better abrasion resistance, improved chemical resistances

AKTISIL VM 56/89

as VM 56 but for greater color neutrality requirements and slightly improved dispersion

AKTISIL O

similar to VM 56/89 but with less moisture content, lower viscosity, lower compression set, improved chemical resistances, best product for silicone rubber

AKTIFIT VM

as Z 91 but with higher tensile strength, higher tensile modulus and lower compression set, better abrasion resistance, improved chemical resistances

SPECIALLY FOR DIAMINE CROSSLINKING (ACM, AEM):

AKTIFIT AM

as Z 91 but with higher tensile strength, higher tensile modulus and lower compression set, better abrasion resistance, improved chemical resistances

SPECIALLY FOR BISPHENOLIC CROSSLINKING (FKM):

AKTIFIT AM

as Z 91, but with higher tensile strength, higher tensile modulus and lower compression set, optimum abrasion resistance, improved resistance to water and fuel

AKTISIL O

similar to AKTIFIT AM, but with lower mooney viscosity, greater elongation at break and optimum compression set, good resistance to water and oil

• AKTIFIT PF 111

similar to AKTIFIT AM, but with lower mooney viscosity, greater elongation at break, good resistance to water and oil

CABLE AND FLECTRICAL INDUSTRY

CABLE SHEATHS, CABLE INSULATION

ADVANTAGES:

- very good extrusion properties
- · medium to high tensile strength
- good compressive property at high temperature
- good hot set property
- high electrical resistivity, also after immersion in water
- very low dielectric loss, also after immersion in water, even without additional silane in the compound
- avoidance of deposits on dies caused by filler
- good resistance against oil, water, acid

RECOMMENDED PRODUCTS:

 SILLITIN Z 86 standard product

• SII FIT 7 91

as Z 86 but with avoidance of deposits on dies caused by filler, greater brightness and color neutrality, less moisture content, improved dispersion, slightly lower compression set, significantly lower dielectric loss

SPECIALLY FOR SULPHUR AND METALOXIDE CROSSLINKING:

AKTISIL MM

as Z 86 but with higher tensile strength, higher tensile modulus and lower compression set even over 100 °C, better abrasion resistance, improved chemical resistances

• AKTISIL PF 216

as AKTISIL MM but with highest tensile strength and tensile modulus as well as lowest compression set up to 100 °C, best abrasion resistance, best chemical resistances

AKTIFIT AM

as Z 91 but with higher tensile strength, higher tensile modulus and lower compression set, better abrasion resistance, improved chemical resistances

SPECIALLY FOR PEROXIDE CROSSLINKING:

AKTISIL VM 56

as Z 86 but with higher tensile strength, higher tensile modulus and lower compression set, better abrasion resistance, improved resistivity, high and constant electrical resistivity when immersed in water

AKTISIL VM 56/89

as VM 56 but for greater color neutrality requirements and slightly improved dispersion

AKTISIL O

similar to VM 56/89 but with less moisture content, lower viscosity, lower compression set, improved chemical resistances, best product for silicone rubber

AKTIFIT VM

as Z 91 but with higher tensile strength, higher tensile modulus and lower compression set, better abrasion resistance, improved chemical resistances, very low dielectric loss, also after immersion in water, also without additional silane in the compound, best product for medium- and high-voltage insulation

49

CABLE AND FLECTRICAL INDUSTRY

CAPACITOR GASKETS

ADVANTAGES:

- · very low sieve residue
- · very low chloride content
- long flow time with short vulcanization time
- · high tensile modulus
- low compression set
- good hot air aging properties
- sealing tightness at high soldering temperatures

RECOMMENDED PRODUCTS:

SPECIALLY FOR PEROXIDE CROSSLINKED EPDM COMPOUNDS:

 AKTISIL VM 56 standard product, good processing properties, high tensile modulus and low compression set

AKTIFIT VM

similar to VM 56, improved processing properties, higher tensile modulus, lower compression set, better aging properties

SPECIALLY FOR RESIN CROSSLINKING OF BUTYL-RUBBER (IIR):

 SILFIT Z 91 standard product, balanced properties, good processing properties, counter product to non-surface-treated calcined kaolinite

AKTISIL VM 56 similar to Z 91 but with higher tensile modulus, lower compression set and slightly increased electrical resistance

AKTIFIT AM as VM 56 but with improved processing properties and further increased tensile modulus

AKTISIL MAM-R as AKTISIL VM 56 but with slightly improved processing properties and further increased tensile modulus

AKTIFIT VM

as MAM-R but with mostly improved aging properties, counter product to surface-treated calcined kaolinite, but with improved processing and aging properties and better compression set

AKTISIL EM similar to VM 56 but in combination with carbon black N-990 highest tensile modulus

CONSTRUCTION INDUSTRY

FLOOR COVERINGS

ADVANTAGES:

- good mixing and dispersion properties
- good calendering properties
- long flow time, short vulcanization time
- · low residual indentation
- less white scratch marks
- high surface quality
- high abrasion resistance
- good resistance to aggressive substances

RECOMMENDED PRODUCTS:

- SILLITIN N 87 standard product, balanced properties
- SILLITIN Z 86 similar to N 87, preferably used as a substitute for silica and fillers in combination with silane, improved abrasion resistance
- SILLITIN Z 89 as Z 86 but for lighter floor coverings and better color neutrality
- SILFIT Z 91
 as Z 89 but for white and brilliant floor coverings, reduced need for titanium dioxide and color pigments, viscosity similar to that of N 87

CONSTRUCTION INDUSTRY

ROOFING MEMBRANES

ADVANTAGES:

- good calendering properties
- high tensile modulus
- good resistance to aggressive substances as acids and other chemicals

RECOMMENDED PRODUCTS:

- SILLITIN N 82 standard product for non-critical compounds with low requirements
- SILLITIN N 85
 as N 82 standard product for slightly higher requirements for color and dispersion, low compression set
- SILLITIN Z 86 as SILLITIN N products, but less wear
- SILFIT Z 91 for white roofing membranes with improved processing properties

ANTI-CORROSION LINING

ADVANTAGES:

- good processing properties
- good calendering properties
- good resistance to aggressive substances as acids and other chemicals

RECOMMENDED PRODUCTS:

- SILLITIN N 82 standard product for non-critical compounds with low requirements
- SILLITIN N 85
 as N 82, for slightly higher requirements for color and dispersion, low compression set
- SILLITIN Z 86
 as N 85, less wear than SILLITIN N products
- AKTISIL PF 777/AKTIFIT PF 111
 as Z 86, hydrophobic filler for uncured butyl
 anti-corrosion strips with minimized water
 swelling, hydrophobic fillers for adhesion primers with improved adhesive strength on steel

BUILDING PROFILES (WINDOW AND FAÇADE SEALING)

ADVANTAGES:

- low to very low moisture content
- enables high loading of filler and plasticizer
- excellent extrusion properties
- high surface quality
- high tensile modulus
- low compression set

RECOMMENDED PRODUCTS:

- SILLITIN Z 86 standard product for black profiles
- SILLIKOLLOID P 87
 as Z 86 but with best extrusion quality/edge smoothness and collapse resistance of complex profiles even at high extrusion speed, slightly higher tensile strength and tear resistance
- AKTISIL VM 56
 as Z 86 but with higher tensile strength, higher tensile modulus and lower compression set, higher loading of filler/plasticizer
- SILLITIN Z 89 standard product for color profiles, similar to Z 86
- AKTISIL VM 56/89 as Z 89 but with higher tensile strength, higher tensile modulus and lower compression set, higher loading of filler/plasticizer
- SILFIT Z 91 standard product for white profiles, avoidance of deposits on dies caused by filler, greater brightness and color neutrality, less moisture content, improved dispersion, lower compression set, very fine cell structure in sponge rubber profiles

AKTIFIT VM

as Z 91 but with very low moisture content (reduced blistering potential and less need for moisture absorber for pressureless vulcanization), higher tensile strength, higher tensile modulus and lower compression set, higher loading of filler/plasticizer, lower concentration of peroxide possible

CONSTRUCTION INDUSTRY

SEALING PROFILES FOR ROAD AND TUNNEL CONSTRUCTION

ADVANTAGES:

- very good extrusion properties
- low moisture content
- · low compression set

RECOMMENDED PRODUCTS:

- SILLITIN N 82 standard product for non-critical compounds with low requirements
- SILLITIN N 85 standard product for slightly higher requirements for color and dispersion, low compression set
- SILLITIN Z 86 standard product, less wear than SILLITIN N products

SEALING TAPE

ADVANTAGES:

- good processing properties
- good calendering properties
- balanced ratio of tensile stress/modulus/tear resistances

RECOMMENDED PRODUCTS:

- SILLITIN N 82 standard product for non-critical compounds with low requirements
- AKTISIL PF 777 for high hydrophobic requirements also in unvulcanized state, low tensile modulus
- AKTIFIT PF 111 similar to AKTISIL PF 777, but with even lower water absorption of unvulcanized mixtures, higher brightness and color neutrality

OTHER APPLICATIONS

SILICONE RUBBER COMPOUNDS

ADVANTAGES:

- good extrusion properties and collapse resistance
- reduced stickiness
- no blooming
- · very good oil resistance
- low tension and compression set without post cure
- partial replacement of ATH with AKTISIL Q or SILFIT Z 91 provides practically the same flame-retardant properties of pure ATH

RECOMMENDED PRODUCTS:

AKTISIL O

- standard product for peroxide crosslinked silicone rubber compounds, suitable for all types of peroxide, also in high doses of up to 100 phr
- as combination partner with ATH up to 30 % of the ATH part for improving the mechanical properties while retaining the flame-retardant properties

• SILFIT Z 91

- for very bright and white compounds with low requirements
- as combination partner with ATH up to 30 % of the ATH part while retaining the flame-retardant properties
- using 2,5-Bis-(tert. butylperoxy)-2,5-dimethylhexane (DBPH) up to 25 phr
- using Bis-2,4-(dichlorobenzoyl)-peroxide up to 75 phr
- not suitable for crosslinking with dicumylperoxide

OTHER APPLICATIONS

LATEX THREADS

• partial substitution of titanium dioxide with SILFIT Z 91

LATEX DIPPED ARTICLES

- filling of natural rubber latex with SILFIT Z 91
- dispersion properties
- · acid resistance

FOOD CONTACT MATERIALS

- high purity, in compliance with BfR and FDA regulations
- good mixing and dispersion properties
- high surface quality
- low compression set
- good resistance, especially against acidic media

PHARMACFUTICAL PACKAGING

- high purity
- good mixing and dispersion properties
- · easy deflashing
- low compression set
- low fragment release and good self-sealing after needle penetration

RECOMMENDED PRODUCTS:

- SILLITIN N 85/SILLITIN Z 86 standard products with balanced properties
- SILFIT Z 91

as standard products, but for highest brightness and color neutrality, avoidance of mold fouling caused by filler, low moisture content, improved dispersion properties, lower compression set than 7 86

AKTIFIT AM

as Z 91, but better profile of properties, especially for diamine crosslinking

SOLES OF SHOES

- good processing properties
- long flow time with short vulcanization time
- easy deflashing

RECOMMENDED PRODUCTS:

For white and brilliant colors: SILFIT Z 91, AKTIFIT AM and AKTIFIT VM as well as potential pigment reduction and finer cell structure in foamed products

SOLID TIRES AND SPINNING COTS

- good processing properties
- long flow time with short vulcanization time
- easy deflashing
- low rolling resistance
- low compression set

ADVANTAGES OF NEUBURG SILICEOUS EARTH AND CALCINED NEUBURG SILICEOUS EARTH IN TPE

BASIC PROPERTIES AND EFFECTS OF THE FILLER

- · low moisture content
- high fineness
- very low sieve residue
- good dispersion properties
- high hardness
- · high surface quality
- even matting
- scratch resistance
- reactivity through silanization

TPE

ADVANTAGES:

- reduction of joint line visibility
- high ultimate elongation
- very good scratch resistance
- reduced shrinkage/warpage
- high tensile strength
- improvement of rigidity
- very good dispersion properties
- very good surface quality

RECOMMENDED PRODUCTS:

AKTIFIT AM

WINDSHIELD WATER GUIDE TRIM, SEBS COMPOUND ON PP CORE IN INJECTION MOLDING PROCESS

ADVANTAGES:

- sufficient melt flowability
- no flow lines
- evenly matte surface without "tiger stripes"

RECOMMENDED PRODUCTS:

- SILLITIN Z 86 puriss
- AKTISIL AM for increased requirements for scratch resistance
- AKTIFIT AM similar to AKTISIL AM but with easier dispersion and also suitable for colored or white products

RECOMMENDED PRODUCTS:

- AKTIFIT VM
- SILFIT Z 91 for lower requirements

PACKAGING SEALS LIKE SCREW CAP SEALS FOR ACIDIC CONTENTS ON A SFBS BASIS

ADVANTAGES:

- very good dispersion properties
- good extrusion properties
- very good acid resistance
- hydrophobic properties
- good mechanical properties
- low compression set
- high purity, suitable for food contact materials

ADVANTAGES OF CALCINED NEUBURG SILICEOUS EARTH IN THERMOPLASTIC MOLDED PARTS AND MASTERBATCHES

BASIC PROPERTIES AND EFFECTS OF THE FILLER

- low moisture content, low moisture absorption
- high brightness and color neutrality
- high fineness
- very low sieve residue
- excellent dispersion properties
- supports pigment dispersion (spacer effect), potential pigment savings
- temperature resistance
- low warpage
- high melt flowability
- high hardness
- high surface quality
- very good scratch resistance
- medium increase in modulus/rigidity
- high impact strength
- high ultimate elongation
- reactivity through silanization

THERMODIASTIC MOLDED PARTS & FILM

SELECTION CRITERIA FOR THERMOPLASTIC MOLDED PARTS AND MASTERBATCHES

POLYMER/ APPLICATION	RECOMMENDED PRODUCT	ALTERNATIVE PRODUCT RECOMMENDATION	REMARKS	FLOWABILITY	ULTIMATE ELONGATION	IMPACT STRENGTH	SCRATCH RESISTANCE	TENSILE STRENGTH	FLEXURAL STRENGTH	NO CROSSLINKING	PARTIAL REPLACEMENT OF WHITE PIGMENT	COST REDUCTION
PA (polyamide)	AKTIFIT AM	SILFIT Z 91		•	•	•						
PBT (polybutylene terephthalate)	AKTIFIT VM	AKTIFIT AM			•	•	•					
PC (polycarbonate)	AKTIFIT VM	AKTIFIT PF 111, SILFIT Z 91	SILFIT Z 91 primarily for low filler levels with low polymer degradation, AKTIFIT VM and AKTIFIT PF 111 also for higher filler levels without any signifi- cant polymer degradation		•	•	•					
PP (polypropylene)	AKTIFIT AM, AKTIFIT AM + MAH-MODIFIED POLYMER	SILFIT Z 91 + MAH-modified polymer, AKTIFIT PF 111	AKTIFIT PF 111 primarily for homopolymers for high ulti- mate elongation and impact strength with good flowability			•	•					
PPS (polyphenylene sulfide)	AKTIFIT AM	development product	development product available with better properties than Aktifit AM: brighter and white color, higher stiffness and flexural strength; sampling possible at any time	•		•		•	•			
PEK (aliphatic polyketone)	AKTIFIT AM	development product	development product available with better properties than Aktifit AM: brighter color (light gray/beige); sampling possible at any time	•	•	•			•	•		
other polymers	SILFIT Z 91, AKTIFIT AM, AKTIFIT VM, AKTIFIT PF 111		depending on the polymer for optimal interaction and other requirements	•	•	•	•	•	•			
white pigment masterbatch	SILFIT Z 91		partial replacement of titanium dioxide up to 30 %								•	•

THERMOPLASTIC MOLDED PARTS & FILMS

63

THERMOPLASTIC MOLDED PARTS

RECOMMENDED PRODUCTS:

AKTIFIT AM

HOUSINGS AND IMPACT RESISTANT MOLDED PARTS, PA 6 AND PA 66

ADVANTAGES:

- high melt flowability
- low warpage
- extremely high ultimate elongation
- extraordinarily high impact strength, even at low temperatures
- · great weld line strength
- no graying of black compounds
- enables low warpage, impact-resistant parts without or with little impact modifier as alternative to PA 6 GF15 impact modified

SCRATCH-RESISTANT PP COPOLY-MER COMPOUNDS FOR AUTO-MOTIVE INTERIOR TRIM

ADVANTAGES:

- scratch resistance
- ultimate elongation
- impact strength, even at low temperatures

RECOMMENDED PRODUCTS:

• SILFIT Z 91

very good scratch resistance, very good impact strength, even at low temperatures. With the addition of MAH-modified polymer: can be increased to outstanding scratch resistance and increased flexural strength

AKTIFIT AM

outstanding scratch resistance, good resistance to bending.

With addition of MAH-modified polymer: can be increased to optimum scratch resistance and very good impact strength and notch impact strength, even at low temperatures, increased flexural strength

THERMOPLASTIC MOLDED PARTS

RECOMMENDED PRODUCTS:

- AKTIFIT AM
- SILFIT Z 91 for lower requirements

WOOD-PLASTIC COMPOSITES (WPC), HANDLES, EXTRUDED PROFILES

ADVANTAGES:

- high throughput/extrusion speed
- smooth and optically even surfaces
- improved scratch resistance
- improved physical properties (impact strength, tensile strength)

CHAIRS, ABS

ADVANTAGES:

- very good dispersion properties
- better crack resistance
- high ultimate elongation
- improvement of rigidity
- low distortion
- very smooth surface

RECOMMENDED PRODUCTS:

• SILFIT Z 91

TRANSPORT PACKAGING FOR WAFER CANISTER, HDPE

ADVANTAGES:

- improved physical properties
- very smooth surface

RECOMMENDED PRODUCTS:

- AKTIFIT AM
- SILFIT Z 91 for lower requirements for ultimate elongation and impact strength

THERMOPLASTIC MOLDED PARTS

PARTIAL SUBSTITUTE FOR TITANIUM DIOXIDE IN WHITE (MASTERBATCH) COMPOUNDS

ADVANTAGES:

- opacity can be retained to a great extent
- brightness can be retained to a great extent
- supports and amplifies blue undertone of bluish titanium dioxide

RECOMMENDED PRODUCTS:

• SILFIT Z 91

for thick-walled parts up to 30 % substitute for titanium dioxide, for thin-walled parts 10 to 15 % substitute for titanium dioxide

FILLER PROPERTIES IN THERMOPLASTIC FILMS AND MASTERBATCHES

ADVANTAGES OF NEUBURG AND CALCINED NEUBURG SILICEOUS EARTH IN THERMOPLASTIC FILMS AND MASTERBATCHES

BASIC PROPERTIES AND EFFECTS OF THE FILLER

- low coefficient of friction
- good transparency
- · high gloss or matting
- low haze
- hardly any adsorption of additives thanks to relatively small surface area
- improvement of film processing/manufacturing properties by increasing modulus

THERMOPLASTIC MOLDED PARTS & FILM

SELECTION CRITERIA FOR THERMOPLASTIC FILMS AND MASTERBATCHES

POLYMER/ APPLICATION	RECOMMENDED PRODUCT	ALTERNATIVE PRODUCT RECOMMENDATION	REMARKS	ANTIBLOCK ADDITIVE	COST REDUCTION	FILM WORKABILITY/FINISHING	MECHANICAL PROPERTIES WITH- OUT INCREASE OF MELTING POINT	MATTING
BO PET (biaxially-oriented polyethylene terephthalate)	SILFIT Z 91	AKTIFIT AM		•	•			
PE, LDPE	SILFIT Z 91, SILLITIN V 88	AKTIFIT PF 111, AKTIFIT AM		•	•			
PE/EVA copolymers	SILFIT Z 91	AKTIFIT AM				•	•	
TPU	AKTIFIT AM	SILLITIN V 88						•
white pigment masterbatch	SILFIT Z 91	SILLITIN V 88	partial replacement of titanium dioxide up to 10 %		•			•

THERMOPI ASTIC FILMS AND MASTERBATCHES

FILMS WITH ANTI-BLOCKING, PACKAGING AND TECHNICAL FILMS

ADVANTAGES:

- · low coefficient of friction
- good transparency
- high gloss
- low haze

RECOMMENDED PRODUCTS:

PET, BIAXIALLY STRETCHED, FILM THICKNESS 15 TO 50 µm:

• SILFIT Z 91 concentration 500 to 1000 ppm

LDPE BLOWN FILMS:

- SILFIT Z 91 mainly for film thicknesses of up to 50 μm, concentration approx. 1%
- SILLITIN V 88 for thicker films above 50 μm, concentration approx. 1 %

LOW MELTING POINT FILMS WITH HIGH EVA CONTENT

ADVANTAGES:

- low coefficient of friction
- good transparency
- improvement of film processing/ manufacturing properties by increasing modulus without increasing the melting temperature

RECOMMENDED PRODUCTS:

- SILFIT Z 91 concentration 10 to 15 %
- AKTIFIT AM for increased requirements for mechanical properties

MATTING OF TPU-FILMS

ADVANTAGES:

- matting
- scratch resistance

RECOMMENDED PRODUCTS:

- AKTIFIT AM very good dispersion properties, good interaction with TPU-matrix through amino silane functionalization, good scratch resistance, moderate matting effect, for thin and very thin films
- SILLITIN V 88 good dispersion properties, stronger matting effect

PRODUCT	PAPER BAG	PE BAG	EVA BAG	BIG BAG TYPE 1/TYPE 2/TYPE 3	BULK
Sillitin					
SILLITIN V 85	25 kg	10 to 25 kg	5 to 20 kg	≤ 750/850/1200 kg	≤ 25 t
SILLITIN V 88	25 kg	10 to 25 kg	5 to 20 kg	≤ 750/850/1200 kg	≤ 25 t
SILLITIN N 82	25 kg	10 to 25 kg	5 to 20 kg	≤ 750/850/1200 kg	≤ 25 t
SILLITIN N 85	25 kg	10 to 25 kg	5 to 20 kg	≤ 750/850/1200 kg	≤ 25 t
SILLITIN N 87	25 kg	10 to 25 kg	5 to 20 kg	≤ 750/850/1200 kg	≤ 25 t
SILLITIN Z 86	25 kg	10 to 25 kg	5 to 20 kg	≤ 600/750/1000 kg	≤ 22 t
SILLITIN Z 89	25 kg	10 to 20 kg	5 to 15 kg	≤ 550/700/900 kg	≤ 22 t
Sillikolloid					
SILLIKOLLOID P 87	25 kg	10 to 20 kg	5 to 15 kg	≤ 550/700/900 kg	≤ 22 t
puriss					
SILLITIN puriss	25 kg	-	-	-	-
ILLIKOLLOID P 87 puriss	20 kg	-	-	-	-
aktiSil					
AKTISIL MAM	25 kg	10 to 25 kg	5 to 20 kg	≤ 550/700/900 kg	-
AKTISIL MAM-R	25 kg	10 to 25 kg	5 to 20 kg	≤ 550/700/900 kg	-
AKTISIL VM 56	25 kg	10 to 25 kg	5 to 20 kg	≤ 550/700/900 kg	≤ 24 t
AKTISIL VM 56/89	25 kg	10 to 20 kg	5 to 20 kg	≤ 550/700/900 kg	-
AKTISIL Q	25 kg	10 to 25 kg	5 to 20 kg	≤ 550/700/900 kg	-
AKTISIL EM	25 kg	10 to 25 kg	5 to 20 kg	≤ 550/700/900 kg	-
AKTISIL AM	25 kg	10 to 25 kg	5 to 20 kg	≤ 550/700/900 kg	-
AKTISIL MM	25 kg	10 to 25 kg	5 to 20 kg	≤ 550/700/900 kg	-
AKTISIL PF 216	25 kg	10 to 25 kg	10 to 20 kg	≤ 550/700/900 kg	-
AKTISIL PF 777	25 kg	10 to 25 kg	5 to 20 kg	≤ 550/700/900 kg	-
Silfit					
SILFIT Z 91	25 kg	10 to 20 kg	10 to 20 kg	≤ 600/750/900 kg	on request
aktifit					
AKTIFIT VM	25 kg	10 to 20 kg	10 to 20 kg	≤ 550/700/900 kg	
AKTIFIT AM	25 kg	10 to 20 kg	10 to 20 kg	≤ 600/750/900 kg	on request
AKTIFIT PF 111	25 kg	10 to 20 kg	10 to 20 kg	≤ 600/750/900 kg	_

Special packaging and sizes are available on request.

Sillitin Sillikolloid aktiSil Silfit aktifit

PRODUCT CHRACTERISTIC	TESTING METHOD		
Brightness Y Brightness Z	DIN 53 163/measuring geometry d/8°		
Color values L* a* b*	acc. to CIELAB		
Particle size D_{50} D_{97}	ISO 13320-1		
Residue > 40 μm > 200 μm	DIN ISO 787 part 18		
Volatile matter at 105 °C	DIN ISO 787 part 2		
Density Bulk density Tamped density	DIN ISO 787 part 10 DIN ISO 903-1976 DIN ISO 787 part 11		
Spec. surface area (BET) Oil absorption	DIN ISO 9277 DIN ISO 787 part 5		
Water absorption	acc. to Baumann		
Hardness silica/kaolinite Abrasivity	acc. to Mohs acc. to Einlehner		
Refractive index n	sin α/sin β		
Water solubility Acid solubility	DIN ISO 787 part 3 DIN 53 770 (0.1 N HCl)		
pH value	DIN ISO 787 part 9		
CHEMICAL ANALYSIS: SiO ₂ Al ₂ O ₃ Fe ₂ O ₃	DIN 51001 (RFA)		
MINERALOGICAL COMPOSITION: Cryptocrystalline silica Amorphous silica Kaolinite and other minerals	based on X-ray diffraction pattern analysis combined with Rietveld		
Equilibrium moisture content at 25 °C and 50 % relative humidity and 80 % relative humidity and 90 % relative humidity	following DIN 66138		
Dispersion time in ester plasticizer	UGR-PV/PT/67		

HOW TO FIND US

PUBLISHER:

HOFFMANN MINERAL GmbH Muenchener Strasse 75 86633 Neuburg on the Danube Germany

Phone: +49 (0) 84 31-53-0 Fax: +49 (0) 84 31-53-3 30

E-Mail: info@hoffmann-mineral.com

www.hoffmann-mineral.com

